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The Kongling Terrane, which is the Archean nucleus of the Yangtze craton, preserves Paleoarchean-Proterozoic
rocks as old as 3.45 Ga. However, the dominant stage of formation of this Archean terrane remains unclear. In
this paper, U-Pb and Lu-Hf isotopes of detrital zircons from two rivers and one stream in the northern part of
the Kongling Terrane were studied by LA-ICP-MS and LA-MC-ICP-MS, respectively. These zircons show compli-
cated internal structures in cathodoluminescence images, but the majority of them have linear or oscillatory
zoning patterns, indicating magmatic origins. In general, the detrital zircons from these three local rivers show
similar U-Pb age distributions. Together, they yield age peaks at 3.3–3.1 Ga (5%), 3.0–2.8 Ga (18%), 2.7–2.6 Ga
(30%), 2.6–2.2 Ga (15%), 2.0–1.9 Ga (27%), 1.9–1.7 Ga (1%), 1.7–1.5 Ga (2%), and 1.0–0.8 Ga (1%). This age distri-
bution implies that the North Kongling Terrane formed primarily during the Meso- to Neoarchean (3.0–2.6 Ga).
Lu-Hf isotopic data reveal predominant subchondritic to chondritic εHf(t) values (−11.3 to 0) for the
Mesoarchean zircons, indicating the dominant role of crustal reworking during this period. In comparison,
most Neoarchean zircons exhibit near chondritic to suprachondritic εHf(t) values (up to +7.4), suggesting
juvenile crustal additions. The 2.0–1.9 Ga zircons have similar initial Hf isotopic compositions as those of the
2.7–2.6 Ga zircons, suggesting a metamorphic recrystallization origin. This observation further implies that the
proportion of Neoarchean ages might be underestimated. Previous studies have reported several 2.7–2.6 Ga
Archean outcrops, minor detrital zircons in Precambrian sedimentary rocks and xenocrystal zircons in volcanic
rocks from the Yangtze craton. Combined with our data, we propose that the 2.7–2.6 Ga magmatism may have
played an important role in forming the Kongling Terrane and have widely affected other parts of the Yangtze
craton as well, similar to many other Archean cratons worldwide. The ~2.7–2.6 Ga may correspond to the initial
stabilization of the Archean nucleus of the Yangtze craton. Thereafter, this craton shows comparable 2.5–2.2 Ga
age records to the recently proposed Nunavutia supercraton, which could provide further clues to the early
tectonic process of the Yangtze craton.

© 2016 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The Neoarchean is one of the most important periods for studying
the formation of the Earth's crust. Significant changes have been docu-
mented to approximately 2.7–2.6 Ga, including the possible initiation
of subduction-collision plate tectonics on a global scale, the formation
of voluminous continental crust, and the cratonization of many Archean
cratons (e.g., Bradley, 2011; Eriksson et al., 2013; Laurent et al., 2014).
Thus far, the corresponding records of the 2.7–2.6 Ga magmatism and
metamorphism have been widely documented in many Archean
cratons, e.g., the Superior craton in North America (Polat and Münker,
2004; Davis et al., 2005; Ketchum et al., 2008; Bedard and Harris,
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2014), the Yilgarn craton in Australia (Ivanic et al., 2012; Wyche et al.,
2012), the Dharwar craton in South Asia (Sunder Raju et al., 2013;
Glorie et al., 2014; Khanna et al., 2014), and the North China and
Tarim cratons in East Asia (Zhai and Santosh, 2011; Yang et al., 2013;
Zong et al., 2013; Ge et al., 2014; Wan et al., 2014).

The Yangtze craton is one of the largest ancient cratons in eastern
Asia. Recent studies on granitoid gneisses revealed the existence of
Paleoarchean rocks as old as 3.4–3.3 Ga from the Kongling Terrane,
which is the Archean nucleus located in thenorthern part of the Yangtze
craton (Gao and Zhang, 1990; Jiao et al., 2009; Gao et al., 2011; Guo
et al., 2014). However, the early evolutionary history of this craton is
still poorly understood, due to the heavy vegetation and uncommon
Archean outcrops. Detrital zircons from fine-grained sediments could
retain their primary isotopic information during subsequent transporta-
tion and sedimentation. Thus, U-Pb and Lu-Hf isotopes of detrital zir-
cons have been widely used in provenance studies and evaluation of
regional tectono-thermal events, as well as to determine the crustal
. All rights reserved.
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growth and reworking history (e.g., Hawkesworth and Kemp, 2006;
Zhang et al., 2006c; Sun et al., 2008; Yang et al., 2009; Condie and
Aster, 2010; Hawkesworth et al., 2010; Iizuka et al., 2010; Condie
et al., 2011; Lancaster et al., 2011; Cawood et al., 2013; He et al., 2013).

In this study,we conducted 323U-Pb and 190 Lu-Hf isotope analyses
on detrital zircons from three modern rivers (Gongjia River, Wudu
River, and Bianyuchi Stream) crossing the northern part of the Kongling
Terrane. The new dataset suggests that the 2.7–2.6 Ga granitoid
magmatism dominates the northern part of the Kongling Terrane.
Together with previous studies of Neoarchean zircons and rocks in the
Yangtze craton, the ~2.7–2.6 Ga magmatism appears to have widely
affected the Yangtze craton.

2. Geological background and sample descriptions

The Yangtze craton is separated from the North China craton by the
Qinling-Dabie-Sulu orogen to the north and from the Cathaysia block by
the Jiangnan orogen to the southeast. It is also connected to the Tibetan
Plateau in the west (Fig. 1A). The Yangtze craton is mainly covered
by Proterozoic rocks with only sporadic outcrops of Archean rocks,
such as the Kongling Terrane, Huangtuling granulite, Yudongzi group,
Houhe complex, and Douling complex in the northern part of the
Yangtze craton (Gao and Zhang, 1990; Qiu et al., 2000; Zhang et al.,
2001, 2006a, 2006b; Sun et al., 2008; Wu et al., 2008; Jiao et al., 2009;
Gao et al., 2011; Wu et al., 2012; Chen et al., 2013a; Guo et al., 2014;
Wu et al., 2014). Moreover, minor Archean xenocrystal zircons in volca-
nic rocks and detrital zircons from sediments were found throughout
Fig. 1. (A) Simplified tectonic map of China, where the North China craton is abbreviated to ‘
(C) Geologicalmap of theNorth Kongling Terrane and the drainage areas (in gray) of the Gongji
in this study.
the Yangtze craton, which may also imply a broad spatial extent of
Archean rocks (Zheng et al., 2006; Zhao and Cawood, 2012; Zhang and
Zheng, 2013).

The Kongling Terrane is the only well-documented Archean base-
ment of the Yangtze craton. According to the lithology and geochronol-
ogy, it can be divided into two segments: the South and North Kongling
Terranes (Fig. 1B) (Qiu et al., 2000; Gao et al., 2011; Zhao and Cawood,
2012). The South Kongling Terrane is dominated by the Neoproterozoic
Huangling batholith (Zhang et al., 2009a). In striking contrast, the
North Kongling Terrane comprises Archean-Paleoproterozoic granitoid
gneisses and metasedimentary rocks (metapelites, metasandstones
and marbles), with minor amphibolites and mafic granulites that
occur as lenses or boudin layers in the gneisses (Gao and Zhang, 1990;
Gao et al., 1999). Previous studies revealed that the granitoid gneisses
are primarily 3.3–2.9 Ga tonalite-trondhjemite-granodiorite (TTG)
and 2.8–2.0 Ga granites. Both the TTG and granites were pervasively
overprinted by a 2.0 Ga high-grade metamorphic event and intruded
by the 1.85 Ga Quanyishang A-type granite (Fig. 1C) (Guo et al., 2015).
The 2.0 Ga geological process resulted in (1) widespread amphibolite
to high-pressure granulite facies metamorphism in the pre-existing
granitoid and metasedimentary rocks (Zhang et al., 2006a, 2006c; Wu
et al., 2009; Gao et al., 2011; Yin et al., 2013; Chen et al., 2013a; Guo
et al., 2014) and (2) crustal anatexis that produced voluminous S-type
granites (Yin et al., 2013; Li et al., 2014).

In this study, sand samples from three local rivers (Gongjia River,
Wudu River, and Bianyuchi Stream) in the North Kongling Terrane
were collected (Fig. 1C). In general, the watersheds of the Gongjia and
NCC’. (B) Structure and division of the Kongling Terrane, modified from Liu et al. (2008).
a River,Wudu River and the Bianyuchi Stream. The red stars represent the sample locations
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Wudu Rivers and the Bianyuchi Stream are confined to the Archean-
Paleoproterozoic North Kongling Terrane. The Wudu River (~50 km
long and 10mwide) is the largest river in theKongling Terrane. It main-
lyflows along theWudu fault. TheGongjia River is approximately 35 km
long and 8–15 m wide, flowing across most of the North Kongling
Terrane. The Bianyuchi Stream is only 3–8 m in width and flows a
short distance of approximately 6 km across the southern part of the
North Kongling Terrane. Both the Gongjia River and Bianyuchi Stream
join together in the middle reach of the Wudu River (Fig. 1C). Samples
GJH01 (31°06′35.5″N, 111°12′53.3″E) and KH223 (31°08′48.4″N,
111°10′15.1″E) were collected from the riverbanks of the Gongjia
River and Bianyuchi Stream, respectively, before their intersections
with the Wudu River. Sample WDH01 (31°06′34.6″N, 111°12′20.0″E)
was collected from the midstream section of theWudu River upstream
of the confluence with the Gongjia River.

3. Analytical techniques

More than 10mgzirconswere separated for each sample by conven-
tional magnetic and heavy-liquid methods. At least 300 grains were se-
lected under a binocular microscope, according to their color and
morphology. Then, they were mounted in epoxy resin and polished to
expose their centers. Cathodoluminescence (CL) images and optical
photomicrographs under both transmitted and reflected lights were
documented to reveal the internal structures of zircons and to select
spot locations for in-situ U-Pb and Lu-Hf analyses. The CL images were
taken by a FEI Quanta 450 high resolution field emission gun (FEG)
scanning electron microscope (SEM) coupled with Gatan Mono CL4+
system at the State Key Laboratory of Geological Process and Mineral
Resources, China University of Geosciences, Wuhan.
Fig. 2. U-Pb concordia plots of the concordant detrital zircons (solid ellipses) from samples
distribution histograms of the concordant zircons are shown in the inset figures (a–c). The U
the probability density plot following the Kernel Density Estimation method of Vermeesch (20
3.1. Zircon U-Pb dating

ZirconU-Pb datingwas conducted using a GeoLas2005 laser ablation
system (Lambda Physik, Germany) coupled with an Agilent 7500a
ICP-MS (Agilent, Japan) at the State Key Laboratory of Geological
Process and Mineral Resources, China University of Geosciences,
Wuhan. The laser beam was set to 32 μm in diameter with a frequency
of 6Hz, and heliumwas used as a carrier gaswithin the ablation cell. The
energy densitywas about 4 J/cm2. Zircon 91500was used as an external
standard to correct isotopic fractionation. U, Th, and Pb concentrations
were calibrated against the NIST SRM 610 and using 29Si as an internal
standard. The raw data were processed using Excel-based software
ICPMSDataCal (ver. 9.0) (Liu et al., 2010). Common Pb correction
followed the method of Andersen (2002), but was negligible for most
of the zircons in this study. All of the concordia diagrams and weighted
averages were produced using the Isoplot software (ver. 3.76) (Ludwig,
2012). The measurements of zircon GJ-1 as an unknown yielded a
weighted average 206Pb/238U age of 601.6± 7.3Ma (1 SD, n=83), con-
sistent with its reference 206Pb/238U age of 599.8 ± 1.7 Ma (2σ) within
analytical uncertainty (Jackson et al., 2004). Zircons with age concor-
dance between 95% and 105% are defined as concordant zircons. Finally,
207Pb/206Pb and 206Pb/238U ages were adopted for zircons with
206Pb/238U ages N1000 Ma and b1000 Ma, respectively.

3.2. Hf isotopic analysis of zircon

Hafnium isotope analyses were performed on a Neptune Plus
MC-ICP-MS (Thermo Fisher Scientific, Germany) coupledwith a GeoLas
2005 laser ablation system (Lambda Physik, Germany) at the State
Key Laboratory of Geological Process and Mineral Resources, China
(A) GJH01, (B) WDH01, and (C) KH223. Data-point error ellipses are 1σ. The U-Pb age
-Pb results of this study are summarized in panel D. A bandwidth of 18 Ma was used for
12).
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University of Geosciences, Wuhan. The laser beam was set at 44 μm in
diameter with a frequency of 8 Hz and an energy density of ~4 J/cm2.
The analyzed spots for the Lu-Hf isotopes were overlapping or as close
as possible to the spots used in U-Pb dating. The analyzed isotopes in-
cluded 171Yb, 173Yb, 174(Hf, Yb), 175Lu, 176(Hf, Yb, Lu), 177Hf, 179Hf,
180(Hf, W) and 182W. The interference of 176Yb on 176Hf was corrected
by measuring the interference-free 173Yb isotope and using the recom-
mended 176Yb/173Yb ratio of 0.78696 (Thirlwall and Anczkiewicz,
2004). Similarly, the relatively minor interference of 176Lu on 176Hf
was corrected by measuring the interference-free 175Lu isotope and
using the recommended 176Lu/175Hf ratio of 0.02656 (Blichert-Toft
and Albarède, 1997). Time-drift correction and external calibration
were performed using the zircon standard 91500. More details on the
technique were reported in Hu et al. (2012). Data reduction was per-
formed using ICPMSDataCal (ver. 9.0) (Liu et al., 2010). The measured
average 176Hf/177Hf values for zircons GJ-1 and Temora-2, as unknowns,
were 0.282016 ± 0.000014 (1 SD, n = 13) and 0.282685 ± 0.000019
(1 SD, n = 30), consistent with their reference values of 0.282015 ±
0.000019 (2σ) (Elhlou et al., 2006) and 0.282686 ± 0.000008 (2σ)
(Woodhead and Hergt, 2005), respectively.

The initial 176Hf/177Hf ratios of zircons were calculated with refer-
ence to the chondritic uniform reservoir (CHUR) at the time of zircon
crystallization. The decay constant was 1.865 × 10−11 yr−1 for 176Lu
(Scherer et al., 2001). A present-day 176Hf/177Hf ratio of 0.282772 and
a 176Lu/177Hf ratio of 0.0332 were used for the CHUR (Blichert-Toft
and Albarède, 1997) to calculate the εHf(t) value. The single-stage
model age (TDM1) was calculated using the present-day 176Hf/177Hf
ratio of 0.28325 and 176Lu/177Hf ratio of 0.0384 for the depleted
Fig. 3. Representative cathodoluminescence images of the concordant detrital zircons with U
(32 and 44 μm in diameter) for the U-Pb and Lu-Hf isotope analyses, respectively. Age errors a
mantle (Griffin et al., 2000), while the two-stage model age (TDM2)
was based on a 176Lu/177Hf ratio of 0.0093 for the upper continental
crust (Vervoort and Jonathan Patchett, 1996).

4. Results

4.1. Zircon U-Pb geochronology

In this study, there were 112 concordant ages out of 158 (71% in
proportion), 80 out of 125 (64%), and 131 out of 183 (72%) detrital zir-
cons from samples GJH01,WDH01, and KH223, respectively (Fig. 2A–C,
Supplementary Table S1). The majority of the zircons display oscillato-
ry zoning (Fig. 3) and high Th/U ratios (N0.3) (Fig. 4), typical for mag-
matic zircons (Corfu et al., 2003; Wu and Zheng, 2004). However, the
2.0–1.9 Ga zircons have variable Th/U ratios (Fig. 4) and diverse zoning
patterns, e.g., oscillatory zoning (Fig. 3-7), sector zoning (Fig. 3-8), or
structureless (Fig. 3-17), indicating diverse origins (magmatic and
metamorphic).

4.1.1. Gongjia River (GJH01)
Most zircon grains are subhedral or rounded, with lengths less than

100 μm. The 207Pb/206Pb ages of the concordant zircons range from
3250 Ma to 1533 Ma. The age distribution has four major peaks at
3.0–2.8 Ga (15% in proportion), 2.7–2.6 Ga (23%), 2.6–2.2 Ga (18%),
and 2.0–1.9 Ga (33%), with minor peaks at 3.3–3.1 Ga (3%), 1.9–1.7 Ga
(3%), and 1.7–1.5 Ga (5%) (Fig. 2A and a). Among these major age
groups, the ages of the 2.6–2.2 Ga zircons are relatively scattered. The
other three groups yield weighted average ages of 2911 ± 11 Ma
-Pb ages and εHf(t) values. Small dashed and large solid circles denote the ablated spots
re given at 1σ level.



Fig. 4. Plots of the U-Pb ages versus the Th/U ratios for the concordant detrital zircons in
this study.

Fig. 6. Histograms of two-stage Hf model ages (i.e., crustal formation age) for the concor-
dant detrital zircons in this study.
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(2σ, MSWD= 6.8, n = 18), 2652 ± 10 Ma (2σ, MSWD= 4.0, n = 26),
and 1969 ± 8 Ma (2σ, MSWD = 1.0, n = 37), respectively.

4.1.2. Wudu River (WDH01)
Most zircons in this sample are rounded, with only a few euhedral

grains present. The oldest concordant zircon age is 3023 ± 21 Ma,
while the youngest is 852 ± 6 Ma. All of the concordant ages yield
three major age groups at 3.0–2.9 Ga (19%), 2.7–2.6 Ga (20%), and
2.0–1.9 Ga (48%), as well as a few minor age peaks at 2.5–2.4 Ga (6%),
~1.85 Ga (1%), ~1.60 Ga (3%), and 1.0–0.8 Ga (4%) (Fig. 2B and b). The
three major age peaks yield weighted average ages of 2903 ± 4 Ma
(2σ, MSWD = 61, n = 15), 2637 ± 3.9 Ma (2σ, MSWD = 20,
n = 16), and 1976 ± 3 Ma (2σ, MSWD = 10, n = 38), respectively.

4.1.3. Bianyuchi Stream (KH223)
Most zircons are euhedral with lengths between approximately

80 and 150 μm. Their 207Pb/206Pb ages range from 3285 to 1929 Ma,
exhibiting two major age peaks at 3.0–2.8 Ga (19%) and 2.7–2.5 Ga
(52%), as well as three minor peaks at 3.3–3.1 Ga (11%), 2.5–2.2 (10%),
and 2.0–1.9 Ga (8%) (Fig. 2C and c). The twomajor peaks yieldweighted
Fig. 5. (A) U-Pb ages versus εHf(t) values for the concordant zircons of modern river sand sampl
WDH01, and orange circles represent KH223), and a few localmagmatic rocks in theKongling Te
et al. (2009), Peng et al. (2009, 2012), Wei andWang (2012), Wu et al. (2009), Xiong et al. (20
versus 176Hf/177Hf(t) ratios of the concordant detrital zircons from this study (filled squares) and
2011; Wei andWang, 2012; Chen et al., 2013a; Guo et al., 2014). (For interpretation of the refer
average ages of 2878 ± 7 Ma (2σ, MSWD = 4.8, n = 25) and 2639 ±
5 Ma (2σ, MSWD = 5.9, n = 6.8).

In summary, the detrital zircon grains from these three samples
have similar age spectra (Fig. 2). Taken together, the age distribu-
tion can be defined by three major age peaks at 3.0–2.8 Ga (18%),
2.7–2.6 Ga (30%), and 2.0–1.9 Ga (27%), with a few minor peaks at
3.3–3.1 Ga (5%), 2.6–2.2 Ga (15%), 1.9–1.7 Ga (1%), 1.7–1.5 Ga (2%),
and 1.0–0.8 Ga (1%) (Fig. 2D). However, it noteworthy that, as con-
fined by the drainage areas of the studied rivers (Fig. 1C), the exact
proportions of exposed rocks with different age records in the Kongling
Terrane, need to be rechecked or updated until more related data is ac-
quired in future.

4.2. Zircon Lu-Hf isotopic compositions

Hafnium isotope analyses were conducted on 46, 80, and 64 con-
cordant zircons from samples GJH01, WDH01, and KH223 (Fig. 5A,
Supplementary Table S2), respectively. As shown in Fig. 5B, the
3.3–3.1Ga, 3.0–2.8 Ga, and 2.7–1.9 Ga zircons exhibit distinctly different
Hf isotopic compositions. Their 176Hf/177Hf(t) ratios increase from
0.28061–0.28075, through 0.28075–0.28100, to 0.28095–0.28135
es from this study (the green diamonds represent sample GJH01, yellow crosses represent
rrane (pale purple circles) fromChen et al. (2013a), Gao et al. (2011), Guo et al. (2014), Jiao
09), Yin et al. (2013), Zhang et al. (2006a, 2009a, b) and Zheng et al. (2006). (B) U-Pb ages
magmatic zircons reported in previous studies (open symbols, Zheng et al., 2006;Gao et al.,
ences to color in this figure legend, the reader is referred to theweb version of this article.)



Fig. 7. Probability density plots of the concordant U-Pb ages of detrital zircons from the Kongling Terrane. (A–D) Detrital zircons from the modern river sands (this study); (E) Archean-
Paleoproterozoic metasedimentary rocks (Qiu et al., 2000; Gao et al., 2011; Li et al., 2016); (F–H) Neoproterozoic sedimentary rocks from the periphery of the Kongling Terrane
(Zhang et al., 2006c; Liu et al., 2008; Wang et al., 2013a; Cui et al., 2014). A bandwidth of 18 Ma was used for the probability density plot following the Kernel Density Estimation
method of Vermeesch (2012). The inset pie charts show the relative proportions of 3.3–3.1 Ga, 3.0–2.8 Ga, 2.7–2.6 Ga, and 2.5–2.2 Ga zircons in all N2.2 Ga zircons, which illustrate the
high proportions of 2.7–2.6 Ga age group.
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for the 3.3–3.1 Ga, 3.0–2.8 Ga, and 2.7–1.9 Ga zircons, respectively
(Fig. 5B). Interesting, the 2.0–1.9 Ga zircons have nearly identical
176Hf/177Hf(t) ratios to the 2.7–2.6 Ga zircons (Fig. 5B).

Among the Archean zircons, the 3.3–2.8 Ga grains have mostly
subchondritic to chondritic εHf(t) values (−11.3 to 0). In contrast, the
majority of the 2.7–2.6 Ga zircons have suprachondritic εHf(t) values
(up to +7.4). Both the 2.6–2.2 Ga and 2.0–1.9 Ga zircons have
subchondritic εHf(t) values (−15.3 to−0.8 and−22.8 to−5.5, respec-
tively). Three 1.9–1.7 Ga zircons yield one chondritic value (+0.7) and
two subchondritic εHf(t) values (−19.2 and −18.8). The 1.7–1.5 Ga
zircon grains mainly have suprachondritic εHf(t) values, ranging from
+2.4 to +6.0. The three 1.0–0.8 Ga zircon grains have extremely
subchondritic εHf(t) values, from −28.4 to −22.0.

Fig. 6 shows the distributions of the two-stage Hfmodel ages for the
concordant detrital zircons in this study. The crustal model ages show
a prominent group at 3.7–2.6 Ga, with two peaks at 3.5–3.3 Ga and
3.2–3.0 Ga, for all three rivers. Uncommon TDM2 values also occur at
~3.8 Ga, ~2.4 Ga, and ~2.0 Ga for the Gongjia and Wudu Rivers.

5. Discussion

5.1. Provenance of detrital zircons in modern river sands from the Kongling
Terrane

The detrital zircons in the river sand samples from the Gongjia and
Wudu Rivers and the Bianyuchi Stream in the North Kongling Terrane
show similar age spectra, namely, 3.3–3.1 Ga, 3.0–2.8 Ga, 2.7–2.6 Ga,
2.6–2.2 Ga, 2.0–1.9 Ga, 1.9–1.7 Ga, 1.7–1.5 Ga, and 1.0–0.8 Ga, as
described above. These age groups are roughly consistent with local
granitoid records. Therefore, we combine the results of all samples to
explore the potential sources for each age group and their geological
significance.



Fig. 8. (A) Distribution of the Archean-Proterozoic rocks in the Yangtze craton (modified from Zhao and Cawood (2012)). The locations of ~2.7–2.6 Ga rocks (circles), and ~2.7–2.6 Ga
xenocrystal (stars) and detrital (triangles) zircons in the Yangtze craton from previous studies. The following numbers denote the localities: (1) Kongling (Gao et al., 1999; Chen et al.,
2013a; Guo et al., 2014, 2015); (2) Huji (Hu et al., 2013; Zhou et al., 2015); (3) Douling (Zhang et al., 2004); (4) Bixiling (Cao and Zhu, 1995); (5) Yudongzi, the 2688 ± 100 Ma is a whole
rock Sm-Nd isochron age and the 2693 ± 9 Ma is an upper intercept U-Pb age of few discordant zircons (Zhang et al., 2001); (6) Jingshan (Zheng et al., 2006); (7) Ningwu (Zhang et al.,
2003); (8) Ningxiang (Zheng et al., 2006); (9) Zhenyuan (Zheng et al., 2006); (10) Maomaogou (Liu et al., 2004); (11) Huangtuling (Sun et al., 2008; Wu et al., 2002, 2008); (12) Huangshi
basin (Yang et al., 2010); (13) Jingdezhen (Wang et al., 2008); (14) Jiangshan and Chun'an domains (Yao et al., 2012); (15) Wuning (Zhao et al., 2011); (16) Hengyang (Zhao et al., 2011);
(17) Yangjiaping (Wang et al., 2012b); (18) Guixi (Duan et al., 2011); (19) Fanjingshan (Wang et al., 2010); (20) Sibao group (Wang et al., 2007, 2011, Wang et al., 2012c); (21)
Dahongshan (Greentree and Li, 2008); (22) Kunming (Wang et al., 2012a); (23) Dongchuan (Zhao et al., 2010). Age errors are given at 1 SD level. (B) Cumulative histograms of the
~2.7–2.6 Ga age records for the magmatic, xenocrystal, and detrital zircons from the Yangtze craton (in panel A). (C) The U-Pb age distribution for N1.0 Ga concordant detrital zircons
in modern river sands from the North Kongling Terrane in this study. (D–G) The U-Pb age distributions for N1.0 Ga concordant detrital zircons in Meso- and/or Neoproterozoic
sedimentary rocks from the South Kongling Terrane (Zhang et al., 2006c; Liu et al., 2008; Wang et al., 2013a; Cui et al., 2014), Fanjingshan (Wang et al., 2010, 2014), Kunming
(Greentree et al., 2006; Greentree and Li, 2008; Zhao et al., 2010; Wang et al., 2012a; Wang and Zhou, 2014) areas, and the summary for the whole Yangtze craton, respectively. The
filled orange bars denote the ~2.7–2.6 Ga age groups. The red line represents the compiled crystallization ages of granitoid rocks in the North China craton (NCC), and these data were
sourced from Condie et al. (2009a, b). The bandwidths of 12 and 18 Ma were used for the probability density plot of panel B and panels C–G, respectively, following the Kernel Density
Estimation method of Vermeesch (2012).
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5.1.1. 3.3–3.1 Ga
The 3.3–3.1 Ga zircons range from 3285 to 3066 Ma. Their εHf(t)

values vary from −4.7 to +1.0. They have TDM2 ages of 3.7 to 3.4 Ga,
which have a weighted age of 3614 ± 15 Ma (2σ, MSWD = 7.0,
n=14), suggesting reworking frompre-existing crust. These character-
istics are consistent with the local 3.4–3.2 Ga TTG-granitic rocks from
the North Kongling Terrane (Jiao et al., 2009; Gao et al., 2011; Guo
et al., 2014). Specifically, the 3.3–3.1 Ga zircons are mainly from sample
KH223. This sample was collected from the riverbank of the Bianyuchi
Stream, where 3.4–3.2 Ga outcropped (Gao et al., 2011; Guo et al.,
2014). Thus, the different amounts of the 3.3–3.1 Ga zircons in the
three samples may result from the sporadic outcrops of Paleoarchean
rocks in the North Kongling Terrane.

5.1.2. 3.0–2.8 Ga
The 3.0–2.8 Ga zircons have an age spectrum ranging from 3023

to 2788 Ma. They have εHf(t) values varying from −11.3 to +4.8,
indicating diverse magma sources. At present, 3.0–2.8 Ga trondhjemitic
and granitic gneisses have been widely reported from both the South
and North Kongling Terranes (Qiu et al., 2000; Zheng et al., 2006; Zhang
et al., 2006a; Gao et al., 2011; Chen et al., 2013a), which could be the
source rocks for the 3.0–2.8 Ga detrital zircons. In this study, the similar
proportions of the 3.0–2.8 Ga zircons in samples GJH01 (15%), WDH01
(19%), and KH223 (19%) imply that the 3.0–2.8 Ga magmatic rocks
might be relatively evenly distributed across the North Kongling Terrane.

5.1.3. 2.7–2.6 Ga
The 2.7–2.6 Ga zircons exhibit the highest age peak in this study,

ranging from 2771 to 2581 Ma. Their εHf(t) values have a large spread,
ranging from −12.2 to +7.4, and the corresponding TDM2 ages vary
from 3.5 to 2.7 Ga. Thus, the source rocks for the 2.7–2.6 Ga detrital
zircons may be heterogeneous and include both juvenile and an-
cient crustal materials. This interpretation is consistent with the Lu-Hf
isotopic features of the two types of granitic rocks in the North Kongling
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Terrane. One type is the 2.67–2.62 Ga A-type (ferroan) granites in the
eastern segment of the North Kongling Terrane (Chen et al., 2013a),
which carry more radiogenic “depleted mantle” Hf signatures. The
other type is the 2.7–2.6 Ga I/S-type (magnesian) granitic gneisses
that hold more unradiogenic ancient crustal Hf features (Chen et al.,
2013a; Guo et al., 2015).

This age is not uncommon in other parts of the Kongling Terrane.
Ling et al. (1998) acquired three whole-rock Sm-Nd isochron ages of
2742 ± 83 Ma (MSWD = 1.60), 2728 ± 118 Ma (MSWD = 3.81),
and 2684 ± 36 Ma (MSWD= 1.24) for amphibolites and TTG gneisses
from the western segment of the North Kongling Terrane. Moreover,
2.7–2.6 Ga magmatic and/or metamorphic zircons are common in the
TTG gneisses and metasedimentary rocks from both the South and
North Kongling Terranes (Qiu et al., 2000; Zheng et al., 2006; Jiao
et al., 2009; Gao et al., 2011). These lines of evidence suggest that the
2.7–2.6 Ga tectono-thermal event(s) could be widespread across the
whole Kongling Terrane, which accounts for the high proportion of
2.7–2.6 Ga zircons in this study (23%, 20%, and 52% for sample GJH01,
WDH01, and KH223, respectively).

5.1.4. 2.6–2.2 Ga
The 2.6–2.2 Ga detrital zircons exhibit scattered ages. Several sub-

groups could be recognized (e.g., 2.55 Ga, 2.45 Ga, and 2.30 Ga,
Fig. 2D). The dominant subchondritic εHf(t) values (−15.3 to−0.8) in
these zircons suggest that their source rocks may be reworked products
of ancient crust. Until now, 2.6–2.2 Ga rocks are considered uncommon
in the Kongling Terrane, with only sporadic ~2.4 Ga meta-granitoid
rocks reported (Zheng et al., 1991; Ma et al., 1997; Wei et al., 2009). It
is noteworthy that the 2.6–2.2 Ga rocks may be more widespread in
other parts of the Yangtze craton. For example, ~2.5 Ga TTG gneisses
were reported from the Douling complex on the northern edge of the
Yangtze craton (Huet al., 2013;Wuet al., 2014) and~2.3–2.2Ga granitic
gneisses from the northern Vietnam in the southwestern Yangtze craton
(Wang et al., 2016). Additional evidence comes from the detrital zircon
records in the peripheral Paleo-Neoproterozoic sedimentary rocks
around the Kongling Terrane (Zhang et al., 2006c; Liu et al., 2008;
Wang et al., 2013a; Li et al., 2016) and other localities of the Yangtze cra-
ton (Greentree et al., 2006; Greentree and Li, 2008; Wang et al., 2010;
Zhao et al., 2010; Wang et al., 2012a, 2014). Therefore, it is proposed
that the 2.6–2.2 Ga age could also be an important tectono-thermal ep-
isode in the early evolution of the Yangtze craton (Wang et al., 2016).

5.1.5. 2.0–1.9 Ga
The 2.0–1.9 Ga detrital zircons have a narrowage range from2051 to

1904Ma. They have subchondritic εHf (t) values ranging from−22.7 to
−5.5 and TDM2 ages from 3.5 to 2.7 Ga. These zircons have variable Th/U
ratios (0.01–2.1) and diverse internal textures (Fig. 3-3, 3-8, and 3-17)
that are indicative of various origins (metamorphic or magmatic).
This interpretation is consistent with the widespread 2.0 to 1.9 Ga
amphibolite- to granulite-facies metamorphic rocks and contempora-
neous S-type granites in the Kongling Terrane (Qiu et al., 2000; Zhang
et al., 2006b; Wu et al., 2009; Cen et al., 2012; Yin et al., 2013). Notably,
most of the 2.0–1.9 Ga zircons exhibit 176Hf/177Hf(t) ratios that resemble
those of the 2.7–2.6 Gamagmatic zircons (Fig. 5B). This agreement indi-
cates that the majority of the 2.0–1.9 Ga zircons may have formed by
metamorphic recrystallization of the 2.7–2.6 Ga zircons during crustal
anatexis, which reset their U-Pb isotopic systems without changing
their initial Hf isotopic compositions (Amelin et al., 2000; Gerdes and
Zeh, 2009; Chen et al., 2010). This interpretation is supported by the oc-
currence of a 1.9 Ga metamorphic rim (176Hf/177Hf(t) = 0.281163 ±
0.000016, 1σ) on a ~2.6 Ga zircon core (176Hf/177Hf(t) = 0.281183 ±
0.000011, 1σ) (Fig. 3-8,9-1).

5.1.6. 1.9–1.8 Ga, 1.7–1.5 Ga and 1.0–0.8 Ga
Compared to the major age groups described above, the minor

groups at 1.9–1.8 Ga, 1.7–1.5 Ga, and 1.0–0.8 Ga may suggest limited
distributions of their source rocks. The 1.9–1.8 Ga zircons have scattered
εHf(t) values (−19.2,−18.8, and+2.0), implying heterogeneous prov-
enances that may be sourced from the 1.85 Ga Quanyishang granite
(εHf(t) −26.3 to −16.7) and/or dolerite dikes (εHf(t) −0.6 to +0.5)
in the Kongling Terrane (Peng et al., 2009; Xiong et al., 2009;
Peng et al., 2012). The 1.7–1.5 Ga zircons have 207Pb/206Pb ages
ranging from 1676 to 1533 Ma. They are mainly characterized by
suprachondritic εHf (t) values (from +2.4 to +6.0), indicating the in-
volvement of juvenile crustal or mantle-derivedmaterials in the gener-
ation of their source rocks. However, coeval magmatic rocks have yet to
be identified in the Kongling Terrane. The 1.0–0.8 Ga detrital zircons
may be sourced from the Huangling batholith (Fig. 1C), as supported
by their consistent subchondritic εHf(t) values (−28.4 to −22.0)
(Zhang et al., 2009a).

It is noteworthy that these 1.7–1.5 Ga detrital zircons may reflect
the breakup process of the Yangtze craton from the Columbia super-
continent. The initial fragmentation of this supercontinent began at
ca. 1.6 Ga (Zhao et al., 2004) or 1.45–1.38 Ga (Pisarevsky et al., 2014)
and was completed by 1.3–1.2 Ga (e.g., North China craton) (Zhao
et al., 2004; Zhang et al., 2009b; Evans and Mitchell, 2011; Yang et al.,
2011; Chen et al., 2013b; Pisarevsky et al., 2014; Wang et al., 2015).
It was suggested that the final breakup of the Yangtze craton from the
Columbia supercontinent may have accomplished before 1.5 Ga, as
marked by the 1.7–1.5 Ga alkali mafic dykes (Chen et al., 2013c; Fan
et al., 2013; Greentree and Li, 2008; Zhao et al., 2010) and rift-related
sedimentary sequences in the western Yangtze (Wang and Zhou, 2014
and references therein). Zircons in these rocks often show similar
suprachondritic εHf (t) values with the 1.7–1.5 Ga detrital zircons in
this study.

5.2. Widespread 2.7–2.6 Ga magmatism in the Yangtze craton

In this study, 222 out of 323 zircon grains are older than 2.2 Ga
(59%, 45%, and 91% for samples GJH01, WDH01, and KH223, respec-
tively). For zircons older than 2.2 Ga, the 2.7–2.6 Ga zircons have
the highest proportions, i.e., 39% for sample GJH01, 44% for WDH01,
57% for KH223, and 44% for all samples together (Fig. 7A–D). These
proportions may be even underestimated, considering that most
of the 2.0–1.9 Ga zircons were recrystallized from the 2.7–2.6 Ga zir-
cons, given their consistent 176Hf/177Hf(t) ratios (Fig. 5B). Thus, the
2.7–2.6 Ga magmatism may have played a dominant role in forming
the granitic crust in the Kongling Terrane. A similar scenario arises
from the Paleoproterozoic metasedimentary rocks in the North
Kongling Terrane (Fig. 7E), which have 63% 2.7–2.6 Ga zircons (Gao
et al., 2011; Li et al., 2016; Qiu et al., 2000). This proportion is apparently
higher than those in younger sediments (e.g., this study, Fig. 7A–D). The
peripheral Neoproterozoic sediments of the Kongling Terrane also
exhibit a major age peak at 2.7–2.6 Ga (Fig. 7F–H), and these sediments
were usually assumed to be derived from the Kongling Terrane or
similar sources (Cui et al., 2014; Liu et al., 2008; Wang et al., 2013a;
Zhang et al., 2006c). Overall, these lines of evidence indicate that the
2.7–2.6 Ga rocks account for the largest proportion of the Archean
Kongling Terrane.

In fact, increasing data suggest that the 2.7–2.6 Ga records are not
just limited to the Kongling Terrane (Fig. 8A). Apart from theA-type gra-
nitic gneisses (2671–2622 Ma) in the eastern part of the Kongling
Terrane (Chen et al., 2013a), coeval A-type granites (2656 ± 6 Ma,
2σ) were reported in Huji area, ~100 km northeast of the Kongling
(Wang et al., 2013b, 2013c; Zhou et al., 2015). In the Dabie orogen,
magmatic zircon cores were collected from Douling diopside leptynites
(2650 ± 14 Ma) (Zhang et al., 2004) and Bixiling coesite-bearing
eclogites (2662 ± 37 Ma) (Cao and Zhu, 1995). In the southeastern
Qinling orogen, amphibolites from the Yudongzi group gave a Sm-Nd
isochron age of 2688± 100Ma (Zhang et al., 2001). Moreover, granites
intruding into the Yudongzi amphibolites yielded a zircon U-Pb upper
intercept age of 2693 ± 9 Ma (Zhang et al., 2001). It suggests that the



9P.-Y. Han et al. / Gondwana Research 42 (2017) 1–12
~2.7–2.6 Ga tectono-thermal event(s) could be widespread across at
least the northern part of the Yangtze craton.

Xenocrystal and detrital zircon data further suggest that the ~2.7–
2.6 Ga magmatism has also widely affected the whole Yangtze craton
(Fig. 8A). First, ~2.7–2.6 Ga xenocrystal zircons were extracted from
Mesozoic volcanic rocks in different parts of the Yangtze craton,
e.g., its northern part (Ningwu, 2621 ± 67 Ma; Jingshan, 2614 ± 8
and 2708 ± 7 Ma), central part (Ningxiang, 2751 ± 8 and 2740 ±
9Ma; Zhenyuan, 2632 ± 10Ma), and southwestern part (Maomaogou,
2692 ± 12 Ma) (Zhang et al., 2003; Liu et al., 2004; Zheng et al., 2006).
As shown in Fig. 8A, ~2.7–2.6 Ga detrital zircons are common in sedi-
ments from the Yangtze craton as well, e.g., the modern riversands
(this study, Fig. 8C) and the Meso-Neoproterozoic sedimentary strata
from the South Kongling (Fig. 8D), Fanjingshan (Fig. 8E) and Kunming
(Fig. 8F) areas, which are located in the northern, central and south-
western parts of the Yangtze craton, respectively.

In summary, 2.7–2.6 Gamagmatism has played an important role in
forming the Kongling Terrane, and it probably has also affected other
parts of the Yangtze craton.

5.3. Implication for the Neoarchean evolution of the Yangtze craton

The 2.7–2.6Gawas perhaps themost voluminous period of crust for-
mation and recycling in Earth's history, accompanied by assembly of
one or more supercontinents (e.g., Kenorland and Superia/Sclavia;
Aspler and Chiarenzelli, 1998; Bleeker, 2003; Condie et al., 2009;
Kranendonk and Kirkland, 2016). The 2.7–2.6 Ga magmatism has been
widely recognized in most Archean cratons worldwide, and it is not a
single event, but instead involves multiple peaks between 2760 and
2650 Ma (Condie et al., 2009). The 2.7–2.6 Ga in the Yangtze craton
may also consist of multiple stages, as illustrated by the three age
peaks in Fig. 8B: ~2.75, ~2.70, and ~2.65 Ga. These 2.7–2.6 Gamagmatic
events in the Yangtze craton caused both juvenile crustal growth
and ancient crustal reworking (Fig. 5). For instance, the 2.7–2.6 Ga
A-type granites from the Kongling Terrane gave suprachondritic zir-
con εHf (t) values (close to the depleted-mantle value), which suggest
additions of mantle-derived materials during this period, while the
coeval I/S-type granites exhibit subchondritic εHf(t) values (down
to b−10), indicating the involvement of abundant pre-existing crustal
materials (Chen et al., 2013a; Guo et al., 2015).

The 2.7–2.6 Ga may have indicated the initiation of the stabilization
process of the Yangtze craton (Chen et al., 2013a; Zhou et al., 2015).
The intracrustal differentiation, stabilization and growth of this craton
during the Neoarchean were suggested by previous studies on the
chemical compositions of Archean-Paleoproterozoic metasediments
and granitoid gneisses in the Kongling (Gao et al., 1999; Guo et al.,
2015). These studies reflect the change of granitoid magmatism,
from local Na-rich TTG rocks (with weak or no Eu anomalies) to wide-
spread K-rich granites (with negative Eu anomalies) during the Late
Archean. The 2.7–2.6 Ga A-type granites are highly potassic and fertile
with significant negative Eu anomalies (Chen et al., 2013a; Zhou et al.,
2015), which probably marked the initial stabilization of the Yangtze
craton.

Meanwhile, the Neoarchean evolution of the Yangtze craton was
also characterized by ~2.5 Ga age peaks as shown by the detrital zircons
(Fig. 8C–G), which could be confirmed by sporadic ~2.5 Ga xenocrystal
zircons (Zhang et al., 2004; Chen et al., 2005, Zheng et al., 2006), and
even the coeval Douling complex (Wu et al., 2014). Besides, 2.36–
2.19 Ga metamorphism was identified in North Vietnam, southern
Yangtze craton (Lan et al., 2001; Nam et al., 2003; Wang et al., 2016).
These lines of evidence suggest that there exist a close link between
the Yangtze craton and the constituent blocks of the supercraton
Nunavutia (including Rae, Gawler-Mawson, peninsular India, West
Africa, Amazonia, North China, and Sask crustal blocks), which was
characterized by the 2.55–2.50 Ga MacQuoid and 2.50–2.28 Ga
Arrowsmith orogenic events but also commonly recording major 2.7–
2.6 Ga crustal additions (Pehrsson et al., 2013). This possible paleogeo-
graphic link could help decipher the tectonic process of the Yangtze
craton during Neoarchean. However, this hypothesis remains specula-
tive until more detailed studies are carried out to better understand
the evolution patterns of the Yangtze craton from Neoarchean to early
Paleoproterozoic.

6. Conclusions

Zircon U-Pb and Lu-Hf isotopic compositions of three river sand
samples from modern rivers in the Kongling Terrane, Yangtze craton,
were analyzed in this study. Integrating the new results with existing
age data from the literatures leads to the following conclusions:
1. The Kongling Terrane experienced multiple magmatic episodes
at 3.3–3.1 Ga, 3.0–2.8 Ga, 2.7–2.6 Ga, 2.6–2.2 Ga, 2.0–1.9 Ga, 1.9–
1.7 Ga, 1.7–1.5 Ga, and 1.0–0.8 Ga. The zircon Hf isotopes show
that significant additions of juvenile mantle materials occurred
2.7–2.6 Ga and 1.7–1.5 Ga, whereas the remaining Precambrian
tectono-thermal events contained more reworked materials from
ancient crust. As suggested by the nearly identical 176Hf/177Hf(t) ra-
tios between the 2.0–1.9 Ga and 2.7–2.6 Ga zircons, the 2.0–1.9 Ga
zircons could be metamorphic recrystallizations of the 2.7–2.6 Ga
zircons.

2. The age groups of 2.1–1.9, 1.9–1.7, and 1.7–1.5 Gamay reflect the as-
sembly and breakup of the Yangtze craton during the formation and
fragmentation of the Columbia supercontinent.

3. The magmatism at 2.7–2.6 Ga may have played a dominant role in
the formation of the Archean Kongling Terrane. The sporadic pres-
ence of ~2.7–2.6 rocks and the ~2.7–2.6 Ga xenocrystal and detrital
zircons suggest that the ~2.7–2.6 Ga tectono-thermal events were
probablywidespread across the Yangtze craton and represent an im-
portant time period of crustal growth and reworking, similar tomany
other Archean cratons worldwide.

4. The ~2.7–2.6 Gamay correspond to the initial stabilization process of
the Yangtze craton.Meanwhile, similarNeoarchean-Paleoproterozoic
age records in the Yangtze craton are comparable to the recently pro-
posed Nunavutia supercraton,which could provide clues for the early
tectonic process of the Yangtze craton.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gr.2016.09.006.
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